
HXCPP
haXe girt by C++

Girt

Australians all let us rejoice
 For we are young and free

 We've golden soil and wealth for toil,
 Our home is girt by sea

From Australian National Anthem

Things to Cover

• The overall architecture
• Some gory implementation details
• Future developments

Why HXCPP?

• The original motivation was speed.
• The neko vm design is very nice, but

just too slow for numeric algorithms.
• Currently, for gaming style algorithms:

• 10x neko
• 2-3x flash/v8
• 0.5x hand-written native

HXCPP in haxe

.Hx.Hx.Hx
.Hx

User Code

.Hx.Hx.Hx
.Hx

Library Code

haxe
gencpp.ml

.cpp .h.h.h.h.h.h
.cpp.cpp.cpp.cpp.cpp
.cpp .h.h.h.h.h.h
.cpp.cpp.cpp.cpp.cpp Build.xml

HXCPP in haxelib

.cpp .h.h.h.h.h.h
.cpp.cpp.cpp.cpp.cpp Build.xml

.cpp

 Runtime

.cpp.cpp.cpp
.h.h.h.h

build-tool

Compiler/SDK

Native.exe Z Std Regex

Gencpp.ml
• The haXe compiler is written in ocaml, a

functional language
• Each "backend" is implemented in a single

file
• Gencpp is about 3000 lines of code
• I gained most of my ocaml knowledge from

the existing haXe compiler code base
• I probably speak ocaml with a French

accent
• Has evolved well beyond initial design

gencpp.ml

The .hx Library Files

• More than a passing
resemblance to the neko
library files

• Laziness is a virtue
• Use “compiler magic” to

delegate the work to the
runtime files

.Hx.Hx.Hx
.Hx

HXCPP Output

• “Readable” C++ (not c++11)
• local functions are a bit hairy

• C++ native virtual functions
• C++ native RTTI
• C++ native exceptions
• Templates do “casting” work
• Macros allow a lot of development to be

done in C++, not ocaml -> more accessible

.cpp

.h.h.h.h.h.h

.cpp.cpp.cpp.cpp.cpp

.cpp

.h.h.h.h.h.h

.cpp.cpp.cpp.cpp.cpp

The HXCPP Runtime Files

• Are provided as source, not binary
• Good: debugging, tinkering,

identical compiler, no binary
distribution

• Bad: extra compile time (maybe
solved by compiler cache?)

• Includes: Initialisation, Arrays, Dates,
Reflection, Strings, Garbage Collection,
CFFI, Threading, Math, Debug etc, etc.

.cpp.cpp.cpp.cpp

.h.h.h.h

HXCPP runtime dlls

• Binary distribution
(but source included)

• Also have more than a passing
resemblance to neko ndlls

• Could not use the neko binaries, but
can get a lot of help from source code

• Laziness is still a virtue

Z Std Regex

Build System

• Neko based replacement for
“make” / “ant”, without cross
platform pain

• Very easy to extend - got nice
user contributions

• android, blackberry, cygwin,
gcc, ios (armv6/armv7/i386),
linux, mac, mingw, msvc,
webos

Build.xml

build-tool

Compiler/SDK

Implementation
The less nerdy amongst you may want to

power down to save some batteries...

Strong Typing

• HXCPP gets its speed from strong typing
• I don’t mean hitting the keyboard hard
• When the compiler knows a type, it can use

registers and perform optmiztion
• It would be easy just to make everything

“Dynamic”, but performance would suffer
• Laziness is not a virtue
• Knowing what HXCPP does with certain types is

a key to writing high performance code

Typing Concepts

• Dynamic - when i refer to variables as
Dynamic, I mean members are identified by
name only, rather than ordinal structure
position or vtable position. All values can be
represented by Dynamic.

• Boxing - when a non-class variable (Bool, Int,
Float, String) is treated as Dynamic, a “boxing”
class must be allocated to provide the Dynamic
access. This allocation can be expensive.

Where is Dynamic Used?

• SomeClass<T> - T variables are stored and arguments are
passed as Dynamic (what else could they be?)

• Can use haxe.rtti.Generic to create multiple types
• Create Bool, Int, Float, String (just Float) variations?

• Functions stored in variables (closures)
• Have strongly typed functor classes (blowout ?), or just

Float variations?
• function foo(bar:{run:Void->Void})

• Fake interfaces?
• var bar = { x : 20 }

• Fake classes?

Arrays

• Arrays are strongly typed, and have
natural C++ implementation

• Are fast - except they have a range check
on every access

• Can even avoid this with “unsafe” access
• Array<Dynamic> is actually Dynamic,

so it can cope with both Array<Bool>
and Array<SomeClass>

Interfaces

• Originally, I used C++ virtual & multiple
inheritance. This was going to cause
problems with GC due to vtable offset thunks

• Changed to use delegation (interface object
has a pointer to original object) - everything
was much nicer

• Variables in interfaces are treated with get/set
functions. I considered using references, but
it was technically challenging

Long Outstanding Issue

• C++ allows some flexibility in the order of
some calculations

• Nice to optimizing compilers
• Nasty for deterministic results
• Because of the way arguments are pushed on

the stack, they most efficient order for
calculation is right-to-left :(

• Working around this has daunted me:
 x = (i++) ? b++ : f(c++ || i++, i++)

CFFI
• C Foreign Functional Interface (actually, C++ FFI)

• Dynamic libraries (static for iPhone) can be built
externally and then used. The HXCPP build tool is
good for this.

• CFFI allows external code to interact with HXCPP
objects by treating them as "handles"

• This is VM implementation independent to a large
extent (can use the same ndll for neko,v8,cpp ...)

• Boxing issues (looking at Float variations)

• Some care must be taken with garbage collection and
blocking operations - make porting neko ndlls harder

Metadata Magic

• You can inject code into your classes to call
“normal” C++ code.

• Because HXCPP uses natural C++, passing and
converting types is quite easy

• May be easier in some cases than CFFI
• Or, maybe get you out of trouble, or get

maximum speed (eg, raw function pointers)
• Newer development, but HXCPP is starting to

use it for the runtime calls

Garbage Collection(GC)

• HXCPP has built-in GC, with minimal assumptions:

1. a standard stack layout,
2. registers can be forced on the stack with a

sufficiently complex function call.
• So far, so good!!

• The collection is “mostly precise”, where the haxe
objects are marked precisely, but the stack is also
scanned conservatively

• This allows objects to be found in CFFI routines, and
optimised code.

...Garbage Collection

• All allocating threads need to cooperate
with GC

• The compiler creates routines to do the
mark phase - there may be some
optimisations that can be done here

• The code is pretty simple - and compiles
easily on all targets

• There is plenty of scope for research +
optimization

Future
I never think of the future - it comes soon

enough. ~Albert Einstein

Future
• Work is ongoing to support haXe features as

they are developed
• Add new compilers as required

• Improve performance by making fewer things
“Dynamic” (probably in order of importance)

• function variables -> full or partial typing

• numeric versions of template classes
• anonymous structs -> fake classes

• type restrictions -> fake interfaces

...Future

• Improve Garbage Collection speed
• multi-thread the mark/collection
• defragmentation/moving
• revisit marking strategy

• Would be a good project for someone
interested

...Future

• Improve instrumentation in debug
mode
• Integrated socket based debugger
• Profiling / code coverage metrics
• Tracing objects for GC
• Graphical views of memory usage etc.

etc.

// Comments?

